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The Michael addition reaction is widely recognized as one of
the most important carbon-carbon bond-forming reactions in
organic synthesis.1 Several reagent systems for this type of
transformation that rely on asymmetric catalysts have been devel-
oped to date.2 However, due to the growing need for its transforma-
tion to an environment-friendly nonmetal-catalyzed asymmetric
synthesis, considerable attention has recently been focused on the
development of efficient small-molecule chiral organocatalysts,3

e.g., pyrrolidine-type chiral amine catalysts. For example, Hanes-
sian,4 List,5 and Enders6 describedL-proline-catalyzed asymmetric
Michael addition reactions. Barbas7 and Alexakis8 have shown that
aminomethylpyrrolidine and 2,2′-bipyrrolidine derivatives could
serve as useful asymmetric catalysts. Furthermore, Jørgensen9

reported an asymmetric Michael addition reaction catalyzed by
chiral imidazoline catalysts. Although these catalytic processes
provide a unique methodology in asymmetric Michael addition
reactions, development of new, effective catalysts is still desired.10

In our own work directed toward devising highly enantioselective
catalysts for the addition of ketones to nitroolefins,11 we have
designed a new class of chiral pyrrolidine catalysts with a pyridine
base component adjacent to a stereogenic carbon center. We
anticipated that the incorporation of this base function should
facilitate enamine formation from ketone precursors viaR-hydrogen
abstraction. In addition, the resulting pyridinium ring should
effectively shield one side of an enamine double bond, which would
make nitroolefin acceptors approach from the nonshielded side to
give the desired Michael adducts in high enantio- and diastereo-
selectivity. We describe here the ability of our new bifunctional
organocatalysts in performing asymmetric Michael addition reac-
tions.

A variety of chiral pyrrolidine-pyridine conjugate base catalysts
3 were prepared from the cyclic sulfamate112 by a one-pot reaction
in yields of 50-87%: coupling reaction with appropriate pyridyl-
lithium reagents (1.2 equiv) followed by acid hydrolysis of sulfamic
acid salts2 (Scheme 1). These new catalysts were then tested in
the asymmetric Michael addition reaction of cyclohexanone (4) to
â-nitrostyrene (5).

As can be seen from the results summarized in Table 1, the
catalytic and enantioselective activities of3a-ediffer significantly.
While the use of catalyst3a gave only a moderate result at room
temperature (entry 1), a decrease in temperature to 0°C led to a
significant improvement in the enantioselectivity (entry 2). To our
delight, the introduction of a dimethylamino- or a pyrrolidino-group
on the pyridine ring at the 4-position (catalysts3b and3c) increased
dramatically the catalytic activity (entries 3-7), and upon the
addition of 2,4-dinitrobenzenesulfonic acid (5 mol %)13 the reaction
went to completion with a nearly perfect stereo- and enantiocontrol.
Thus, when a mixture of4 (20 equiv)14 and5 was reacted at 0°C
in CHCl3 in the presence of 10 mol % of3c and 5 mol % of 2,4-
dinitrobenzenesulfonic acid, the desired product6 was obtained with
an excellent selectivity (entry 7). The lower efficiencies of the
isomeric catalyst3d and the one-carbon homologue3e indicate the
importance of proximity of a pyrrolidine-pyridine bifunctionality
system (entries 8 and 9).15

With the optimal conditions in hand, we then examined a variety
of ketones and nitroolefins to establish the general utility of this
asymmetric transformation (Table 2).16 All reactions were performed
in CHCl3 at 0 °C in the presence of 10 mol % of3b or 3c and 5
mol % of 2,4-dinitrobenzenesulfonic acid. Various styrene-type
nitroolefins were reacted smoothly with4 in excellent diastereo-
selectivity (up to 99:1) and high enantioselectivity (up to 98%)
(entries 1-10). Tetrahydrothiopyran-4-one was also a suitable
substrate as a Michael donor (entries 11 and 12). Isovaleraldehyde
provided also the desired adduct13, but in very low enantioselec-

Table 1. Catalytic Asymmetric Michael Addition of Cyclohexanone
(4) to Nitrostyrene 5 under Various Conditionsa

entry cat. solvent
time
(h)

yieldb

(%)
drc

(syn/anti)
ee (%)d

(syn)

1 3a CHCl3 24 82 95/5 63
2e 3a CHCl3 36 76 97/3 86
3 3b CHCl3 36 78 95/5 88
4e 3b CHCl3 (+ acidf) 36 99 97/3 94
5e 3b CHCl3 (+acidg) 20 98 98/2 95
6e 3c CHCl3 (+acidf) 24 97 97/3 95
7e 3c CHCl3 (+acidg) 24 95 98/2 99
8 3dh CHCl3 48 66 91/9 56
9 3eh CHCl3 48 55 92/8 55

a Unless otherwise noted, all reactions were conducted in CHCl3 (2 mL)
using4 (0.5 mL, 20 equiv) and5 (0.25 mmol) in the presence of 10 mol
% of the catalyst.b Isolated yield.c Determined by1H NMR of the crude
mixture. d Determined by chiral HPLC analysis (Chiralpak AD, hexane/2-
propanol) 90:10).eAt 0 °C. f 2,4-Dinitrobenzenesulfonic acid (10 mol %)
was added.g 2,4-Dinitrobenzenesulfonic acid (5 mol %) was added.

Scheme 1
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tivity (entries 13 and 14); in this case the use of catalyst3a gave
a better result (entry 15).

To account for the present high enantio- and diastereoselective
Michael addition reactions, we propose an acyclic synclinal
transition state, in which the pyridinium ring must effectively shield
the si-face of an enamine double bond, as depicted in Scheme 2
based on Seebach’s model.17

In conclusion, we have developed a new direct method for the
asymmetric Michael addition reaction of ketones to nitroolefins

using new pyrrolidine-pyridine conjugate base catalysts, which
are easily prepared fromL-prolinol. The reaction was highly efficient
in terms of productivity (up to 100%), enantioselectivity (up to 99%
ee), andsyn-diastereoselectivity (up tosyn/anti99:1), and might
be useful for preparing enantiomerically enrichedγ-nitroketone
derivatives. Further studies to extend the scope of this reaction are
now in progress.
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Table 2. Catalytic Asymmetric Michael Addition of Ketones to
Nitroolefinsa

a All reactions were performed in CHCl3 (2 mL) at 0°C using ketone
(20% vol) and nitroolefin (0.25 mmol) in the presence of 10 mol % of3
and 5 mol % of 2,4-dinitrobenzenesulfonic acid.b 3b was used.c 3c was
used.d 3a was used.

Scheme 2
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